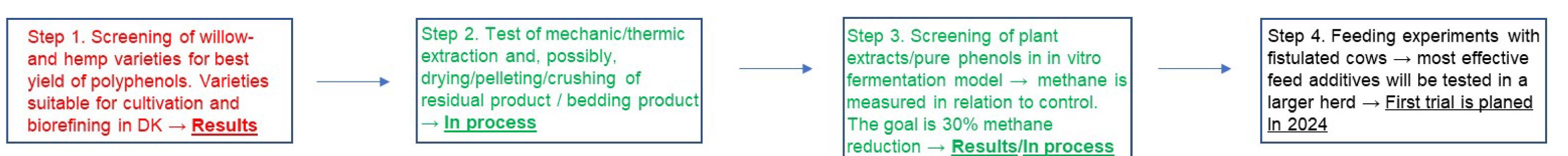
Concentrate of polyphenols such as natural tannins and flavonoids from willow and hemp as organic feed additive for methane reduction in dairy cows

Natalja P. Nørskov¹, Mihai Victor Curtasu¹, Mette Olaf Nielsen¹, and Arne Grønkjær Hansen²

¹Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, Denmark, ²Innovation Center for Organic Farming, Agro Food Park 26, Denmark.

Contact: natalja.norskov@anivet.au.dk


Project ECOCO2W: Aarhus University is heading a new project to investigate whether willow and hemp have potential as bioactive feed additives, which can inhibit methane emission from cattle. The project is carried out in collaboration with the Innovation Centre for Organic Farming, Ny Vrå Bioenergy, Bio2Products, Danish Technological Institute and SEGES

Green Transition Idea

- The primary idea is to develop a new feed additive as an important climate initiative for organic cattle producers to reduce the enteric methane production in dairy cows with 30%.
- This is expected to be achieved by adding plant extracts from

organically grown willow and hemp, plants with a high content of polyphenols such as tannins and flavonoids that inhibit methanogenic microorganisms.

Project step-by-step

Results until now

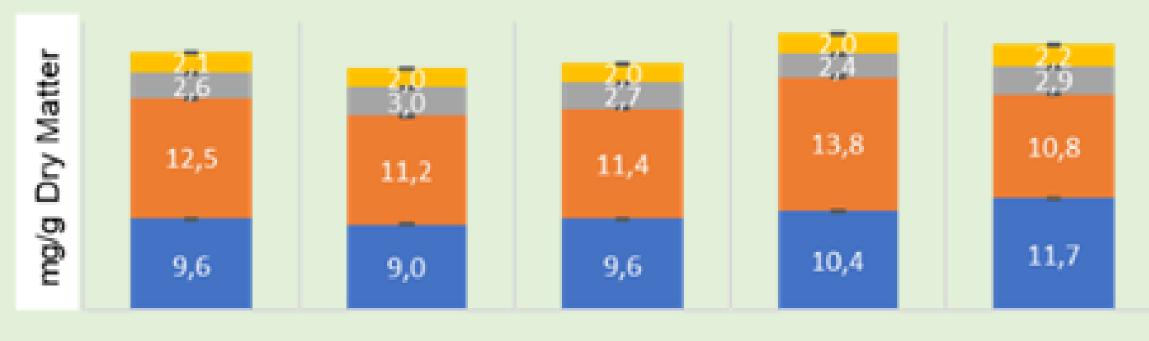
TOTAL PHENOLIC CONTENT

■ Bark

Willow: Collected February

Dose-response with maize and grass silages

Methane reduction > 50% with pure polyphenol (3 og 6% inclusion on Dry Matter basis)


	Additive	Inclusion dose % DM	TGP mL/g DM	TGP mL/g dDM	CH4 mL/g DM	CH4 mL/g dDM	CH4% TGP	CH4:CO2%	dDM%
	CTRL	0	125	174	7,53	10,6	7,07	29,8	71,5
		1,5		181	7,68	11,3	6,84	27,2	68,6
	Polyphenol	3	109	164	3,53	5,02	3,91	20,1	65,5
1		6	96,7	172	1,69	3,06	2,42	14,1	56,4

**, statistically different values compared to the Control (p < 0.05); Total Gas Production (TGP); Methane (CH4); Dry Matter (DM); degradable DM (dDM)

Hemp: Collected in September

TOTAL PHENOLIC CONTENT

■ FL leaves Stem < 0.5mm Stem > 0.5mm

Ammonia reduction with pure polyphenol (3 og 6% inclusion on Dry Matter basis (DM))
No Volatile Fatty Acids (VFA) or pH changes

,	Additive	Inclusion dose % DM	pН	Total VFA mmol/L	Acetic acid %	Propionic acid%	Butyric acid%	Ammonia mM
	CTRL	0	6,82	67,7	67,8	18,2	9,56	15,2
	Polyphenol	1,5	6,77	64,9	68,1	18,3	9,51	14,3
		3	6,8	65,3	67,9	19,1	9,25	13,4
		6	678	62,5	68,6	18,3	9,72	12,4

**, statistically different values compared to the Control (p < 0.05)

FEDORA 17 FERIMON FINOLA FUTURA 75 SATHICA

Conclusion

- Willow and hemp contain bioactive polyphenols and tannins
- Pure polyphenols inhibited methane production by >50% and ammonia by >12% with only slight decrease in feed degradability of 8% and no effect of production of volatile fatty acids in vitro
- Further in vivo experiments will be performed in the near future

Funding

Project "Tannins of willow and hemp as organic feed additive for methane reduction in dairy cows (ECOCO2W) is part of the Organic RDD 7 program, which is coordinated by the International Center for Research in Organic Food Systems (ICROFS). It has received grants from the Green Growth and Development program (GUDP) under the Danish Ministry of Food, Agriculture, and Fisheries.

