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Introduction to the biostatistical analysis

The Project

The current report describes microbiome profiles of 100 samples collected across 3 project years (2021-2023),
across a corresponding number of fields in Denmark. For each field, one sample was collected to represent the
field, corresponding to the ‘main’ samples collected for each field from 2021. These samples were taken for
each field based on 16 subsamples taken in a w-pattern throughout the field.

In this report we analyse the full project dataset. We split many analysis by JB values into 2 groups based on
initial analysis of data from 2021-2022 where we saw a strong association between JB and microbiome
profiles. We split the further analysis based on JB as we find the effect of JB overshadoves the associations
that may be between the microbime and other variables of interest. Different from the prior years reports we
also added geography information and some weather information like rainfall and temeratures. We will relate
these informations to the microbiome as well. Where feasiable, we will both look at the cross-year effect where
we adjust for the effect of year and look for effects that differ between years thus looking for association
between the microbiome and metadata that differ (or depend on) other factors that associate with a specific
year. The aim is to evaluate how the microbiome of the fields associate with other field parameters of both
agricultural practices and soil indicators of nutrients, type and structure.

The JB groups are:

« JB1+JB2
« JB5+JB6+JB7

The one sample with JB4 is removed. (one sample was removed for stating JB 2-4)



Analysis

In “Report 3, biostatistical analyses are performed and the results presented, building on the data generated
and evaluated in the 2 prior reports (Report 1: Sequencing and data processing report, Report 2:

Microbiome profiling report).

Through biostatistical analysis we relate the microbiome profiles to the key variables selected for year 2022.
The focus here is to evaluate how and to what extent the variables shape and relate to the soil microbiome
composition and diversity. We therefore focus on the overall structure of the microbiome also called the
microbiome composition and the diversity.

The key variables assessed in this report are summarized with summary statistics across the 48 samples in the

below table.
Summary Statistics
Variable
year
... 2021
... 2022
... 2023
JB_groups
...JB1_JB2
... JB5_JB6_JB7
JB_value
o1

.2

Geographic_location_letters
..B

.. F

.. MJ

.. NJ

.. SJ

99

13

48

38

99

53

46

99

32

21

39

99

32

11

15

18

Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

13%

48%

38%

54%

46%

32%

21%

4%

39%

3%

4%

4%

32%

1%

15%

18%



Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Y 15 15%

Rainfall 99 352 49 256 313 388 442
Average_drought_index 99 6.5 1.6 3.8 4.9 7.9 8.7
Average_temp. 99 13 0.45 13 13 14 14
Earthworm_status 99

.0 22 22%

o1 77  78%

Cold_sail 99

.0 73 74%

o1 26 26%

Compact_soil 99

.0 85 86%

o1 14 14%

field_well_drained 99

.0 10 10%

o1 89 90%

Mulching_of_straw 99

.0 50 51%

o1 49  49%

Clovergrass_within_3_years 99

.0 69 70%

o1 30 30%

No_plough 99

.0 77  78%

1 22 22%

ConservationAgriculture 99

.0 93  94%



Variable

Years_since_plowing
Rt

Phosphorus
Potassium

Magnesium

Cobber
Organic_material_perc
Clay_perc
Nitrogen_perc
Organic_farm

.0

Years_since_turning_organic

Livestock

Livestock _manure

.0

Commercial.fertilizer

Vinasse

Cast

99

99

99

99

99

99

99

99

99

99

42

57

57

99

40

59

99

23

76

99

56

43

99

92

99

Mean

6%

3.8

6.4

3.1

11

6.5

2.5

3.2

8.8

0.15

42%

58%

15

40%

60%

23%

77%

57%

43%

93%

7%

Std. Dev.

3.5

0.52

1.3

2.6

1.1

1.4

4.3

0.054

6.2

Min

5.4

0.7

1.5

1.9

1.2

24

0.07

Pctl. 25

2.1

6.5

1.8

2.3

4.8

0.12

10

Pctl. 75

6.7

3.9

13

7.3

3.1

3.8

12

0.18

20

Max

14

7.6

8.2

50

16

7.5

8.7

20

0.35

22



Variable

Degassed.fertilizer

.0

Haveparkaffald

Chalked

97

99

76

23

99

98

76

22

Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

98%

2%

7%

23%

0.051 0.22 0 0 0 1

78%

22%

Table 1: Summary statistics of the key variables selected for evaluation in relation to the fields

microbiome profiles in year 2022.

Geography and JB values

As a new feature we include information on the geographic location of the fields collected in the project. Se use
coordinates to show the location of the fields on a map, and color the data points by JB value and year of
sampling to get an understanding of the relationship. We then identify single species that differ in abundance
between geographic reagions, using an anova model adjusting for year.
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Figure 1: Visualization of the geographic location of the samples. Using the coordinates of each field in
the project, we show the locations on a map and color the samples by region to illustrate the regional
distribution of samples in the project.
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Figure 2: Visualization of the geographic distribution of samples collected each year. Using the
coordinates of each field in the project, we show the locations on a map and color the samples by year of
sampling.
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Figure 3: Visualization of the geographic distribution of JB types for the included samples. Using the
coordinates of each field in the project, we show the locations on a map and color the samples by year of JB

value

The abundance of individual species may also deviate between regions driven by the differences in soil
properties, farming practices and climate tbetween the regions. We here identify species that differ in

abundance between any two regions and for top deviating species show their abundance on a map.

Sum.Sq
s__Mpycolicibacterium_frederiksbergense 5.495
s__Pseudomonas_fluorescens 112.057
s__Streptomyces_vinaceus 19.073
s__ Streptomyces_sp. RPA4 2 11.113
s__Nocardioides_euryhalodurans 11.123
s__Peribacillus_butanolivorans 18.044
s__Micromonospora_echinofusca 24.770

s__Turicibacter_sp. H121 15.736

Df

F.value

5.278

5.186

4.590

3.666

3.769

3.699

3.340

3.389

Pr..F.

0.000108

0.000129

0.000420

0.002670

0.002170

0.002500

0.005160

0.004670

p.adj
0.00537
0.00537
0.01160
0.03690
0.03690
0.03690
0.04760

0.04760



Sum.Sq Df F.value Pr..F. p.adj

s__Paraburkholderia_hospita 31.014 6 3.404 0.004530 0.04760
s__Ensifer_adhaerens 24.209 6 3.210 0.006710 0.05570
s__Arthrobacter_sp. 2454 2 5.385 6 2.861 0.013500 0.09200
s__Microbacterium_foliorum 10.988 6 2.765 0.016400 0.09200
s__Nocardioides_ungokensis 7.492 6 2.874 0.013200 0.09200
s__Nakamurella_multipartita 6.886 6 2.758 0.016600 0.09200
s__Pseudomonas_putida 64.339 6 2.818 0.014700 0.09200
s__Nocardioides_sp._S5 5.245 6 2.550 0.025200 0.13100

Table 2: Results from ANOVA analysis of single species differential abundance between regions. A
anova model was used to identify single species that wary in clr-transformed abundance between any two
regions (adjusting for year and JB groups). Species to be analyzed where pre-selected as the top abundant
and most varying species in the dataset. The table show species with adjusted p<0.15 and rows are colored
red (p.adj<0.05) and salmon (p.adj<0.1) based on the adjusted p values.

Consider if we do want to adjust the analysis above for JB values. We know there is a srong correspondance
between location and JB values, and one could argue that we expect a difference between location largely due
to soil type differences. When we adjust for JB, we thus look for any location/region differences not driven by
JB, and leave direct JB differences to the below analyses.

Maps reflecting species abundance of the top 3 species showing strongest region differences The clr-
transformed abundance of the top 3 species from the above table is shown on individual maps.
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Figure 4: Visualization of the geographic distribution of samples colored by the clr-transformed
abundance of one specific species.

The species Streptomyces sp. RPA4 2 show an interesting pattern on the above plot and we thus zoom in to
review the species abundance across the location using a boxplot, and review the association with JB groups
and year of sampling.



by JB Groups by Year by Geographic Location
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Figure 5: Boxplots showing the clr-trannformed species abundance between JB groups, year and
region.

Evaluation of overall microbiome profiles

We initiate the evaluation of the 10 samples (1 per field) with a stacked barplot of the microbiome profiles in
each sample. This allows us to make a first evaluation of the extent of difference in the taxonomic profiles
between the fields.

Note that in order to show the organisms with a color scheme that is interpretable, it is necessary to filter the
profiles and select a subset of the most abundant clades to be included in the plots. The filtering used is
specified in the axis labels of each plot (e.g. >2% in the relative abundance plots mean that a clade must have
a relative abundance across samples of more than 2% in order to be included in the plot).

Stacked barplots

The stacked barplots allow us to visually access the stability of the taxonomic profile across the fields, and get
a feeling of the level to which individual clades are found across field or more sporadic. Compared to the
bacterial part of the microbiome, the fungi show a large deviation between fields, with both large variation in
some, and others that are dominated by a few clades. And we see how the dominating clade is also different
between many fields.

Phylum Class Order
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Figure 6: Visualization of the microbial community in the samples. Stacked barplots of taxonomic clades
in each of the evaluated samples. Clade abundance was transformed to relative abundance to sum to 100% in
each sample. The plot is seperated into two parts - one per group of samples based on JB values.

Microbiome communities related to factor variables

We use the overall microbiome profiles presented in the stacked barplots above, to calculate a measure of
difference in the microbiome composition between samples (beta-diversity). The calculated beta-diversity
measures are used for visual inspection of the relationship between the microbiome profiles in the so called
ordination plots (see below), and in a statistical model named ADONIS (or PERMANOVA, see details below) to
evaluate if the overall microbiome composition associates with the selected variables. For these evaluations we
focus on the variables that can be viewed as binary or generating groups (e.g. JB value, Earthworm status,
Crops, Mulching of straw and Years since plowing). These variables are “grouping variables” that allow us to
group samples into subgroups. The remaining variables constitute continuous values (concentrations or
percentages) and therefore, we use a different set of tools to evaluate how they relate to the overall
microbiome composition (see below).

Note that “years since plowing” and “Years since turning organic” are analyzed as integers with increasing
values (0,1,2, etc) and could be analyzed both with ADONIS and the model used for continuous variables
(ENVFIT, see below). However, we find it interesting to visualize the shift in the composition according to
“years” in an ordination plot, and the variable is therefore included here.



Visualization by heatmaps (for single organisms)

We show the relative abundance (0-100) for the most abundant species in samples groups. The samples are
grouped first by JB group and then the factor variable. This allow us to inspect JB specific and general effects
on the taxa for each factor variable.

Note, we show here plots for one taxonomic level, but plots are made for all levels, and should be reviewed.
See these in the project folder under lllustrations (DA00204/data/ITS/4_Statistical_analysis/lllustrations). There
heatmaps are foudn both with samples grouped by factor variables and with abundance shown for each
sample seperated just by JB value (e.g. Heatmap_Class_byJB.png).

Year and JB Earthworm_status Cold_sall Compact_soill field_well_drained
Mulching_of_straw Clovergrass_within_3_years No_plough ConservationAgriculture
Years_since_plowing Organic_farm Years_since_turning_organic Livestock
Livestock_manure Commercial.fertilizer Vinasse Cast Degassed.fertilizer
Chalked

Chalked (Relative abundance (1-100)

2021 2022 2023
oteobacteria; Enterobacteriaceae- 19 30 36 36 1 1
'roteobacteria; Bradyrhizobiaceae- 15 14 6 7 10 14
Firmicutes; Bacillaceae- 2 1 1 2 12 15
Proteobacteria; Yersiniaceae- 7 6 14 3 0 0
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Figure 9: Visualization of abundance of the microbial organism between samples grouped by JB and
factor variable.

Visualization by ordination (beta-diversity)

As described in Report 2, beta-diversity is a measure of how similar or dissimilar the microbial community is
between each pair of samples. The measures are useful for statistical analysis and visualization of the overall
microbiome community. In ordination plots, each sample is a point and the distance between the points



increases with increasing dissimilarity in the microbiome communities.

Here we evaluate the microbiome communities using the Bray-Curtis, Aitchison and Jaccard beta-diversity
measures. If not all plots are shown in this report, you can find them in the project folder. We use a combination
of beta-diversity measures as each measure highlights different properties of the microbiome. See more details
in Report 2.

We use the different measures in combination with different microbiome profiles (taxonomic levels and
normalization) as follows:

» Bray Curtis and Jaccard are computed from the relative abundance data, at the the genus level
« Aitchison is computed from the total abundance data transformed with central-log-ratio (CLR), at the
genus level

The Aitchison distance is a simple euclidean distance calculated using CLR transformed microbiome profiles.
An analysis of CLR transformed data will reveal how the organisms behave relative to the per-sample average
microbiome. Values for a microbe can therefore be negative after CLR transformation - meaning that it makes
up a smaller amount of the microbiome than the average abundant microbe. This is a very different way to view
the microbiome than Bray-curtis and Jaccard that uses the data as relative proportions (i.e. how big a
proportion of the sample’s microbiome does the individual microbe comprise). This might appear unnecessarily
mathematical and unrelated to agrobiology but the CLR transformation has proved to be able to pinpoint
patterns in microbiomes that are driven by environmental factors such as nutrient content or treatment applied
to the samples. We therefore evaluate structures in the dataset using all three measures.

As we move from the per-year analysis to a cross-years analysis, | have changed the ordination method from
an NMDS method (metaMDS in package vegan) to MDS/dbRDA (capscale in package vegan), as the capscale
approach allows me to condition (or partial out, aka. remove), the effect of year from the data allowing us to
better inspect effects of other variables in the ordination plots. In the statistical analysis e.g. the ADONIS
model, | do this by including a term for year in the model.

Perhaps when we have data from 2023 as well, we can try to look if any effects are specific to one year, and
then discuss what was different between the years to possible cause this. But with the few samples form 2021
we cannot relably extract such information at this point.

Permutational Multivariate Analysis of Variance

To evaluate if the compositional differences evaluated below using ordination plots explain a notable amount of
the variation in the microbial composition, and if the amount of explained variation is statistically significant, we
perform an analysis named Permutational Multivariate Analysis of Variance (ADONIS). ADONIS uses sums of
squares of a multivariate dataset and is analogous to MANOVA (multivariate analysis of variance) using beta-
diversity measures. It uses distance matrices among sources of variation and fits linear models to the distance
matrices using a permutation test with pseudo-F ratios and can therefore be considered as a “permutational
manova”.

For the analysis we use Bray-Curtis, Jaccard and Aitchison beta-diversity measures and perform the analysis
at the phylum level down to the ASV level. The latter is used in amplicon sequencing in which a group of exact
sequences is referred to as an amplicon sequence variant (ASV).

Each table shows results from evaluation of the effect of one variable and there is thus one table per variable.

In each plot, samples are colored by the variable being assessed.

JB value Earthworm status Cold_sail Compact soil Field well drained

Mulching of straw Clovergrass within 3 years No plough Conservation Agriculture



Years since plowing Organic farm Years since turning organic Livestock
Commercial fertilizer Vinasse Cast Degassed fertilizer Chalked
Relative abundance Presence/absence CLR transformed abundance
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Figure 28: Visualization of structure of the microbial community between the samples. Ordination plots
using different beta-diversity measures and data transformations as stated in the plot titles. Dots are colored by
the variable of interest as seen to the right of the figure panels.

Bray-Curtis Jaccard Aitchison

Taxa level R2 p R2 p R2 p

Phylum 0.0653 0.001 0.016 0.033 0.0303 0.002
Class 0.0244 0.001 0.0249 0.004 0.0351 0.001
Order 0.0246 0.002 0.0226 0.007 0.0324 0.001
Family 0.0349 0.001 0.0236 0.006 0.0356 0.001
Genus 0.0413 0.001 0.0241 0.003 0.0344 0.001
ASV 0.0495 0.001 0.0365 0.001 0.0368 0.001

Table 3: Results from ADONIS analysis. The table shows results from ADONIS analyses including samples
from all fields. The analysis was performed using 999 permutations to robustly calculate significance. The table
shows the obtained R-squared values that indicate the percentage of variation that the variable could explain
and the corresponding p-values.

With the striking effect of JB groups on microbiome community when viewed in respect to the composition
properties (clr data), we look further into the differences. First we apply an ANOVA model to identify single
species differing in abundance between the two JB groups.



s__Streptomyces_sp._RLB1_33
s__Bradyrhizobium_diazoefficiens
s__Luteitalea_pratensis
s__Ensifer_adhaerens
s__Phycicoccus_sp._ HDW14
s__Arthrobacter_sp. PAMC25564
s__Microvirga_ossetica
s__Paraburkholderia_hospita
s__Streptomyces_sp._ RPA4_2
s__Bradyrhizobium_betae
s__Afipia_sp._GAS231

s__ Streptomyces_vinaceus
s__Agromyces_aureus
s__Skermanella_sp._TT6
s__Bradyrhizobium_japonicum
s___Micromonospora_zamorensis
s__Peribacillus_butanolivorans
s__Nocardioides_sp._zg 1228
s__Nocardioides_sp._S5
s__Oerskovia_sp. KBS0722
s__Mpycolicibacterium_frederiksbergense
s__Mycobacterium_sp. JS623
s__Brevibacterium_sp._ PAMC23299
s__Arthrobacter_sp. U41
s__Rhodococcus_erythropolis
s__Nocardioides_euryhalodurans

s__Aeromonas_encheleia

Sum.Sq
42.083
26.351
28.893

121.557
30.312
25.942
68.529
99.690
32.771
65.914
10.468
29.807
29.973
10.540
10.854
18.445
22.894
10.456

7.752
16.464
4.196
7.843
80.045
7.069
6.108
8.594

64.813

Df

—_—

F.value

99.560

97.504

89.742

84.854

77.809

63.976

61.034

56.994

55.521

40.710

39.088

35.082

30.428

30.190

28.985

25.144

24.058

21.695

20.593

19.483

19.038

18.898

18.385

16.893

15.523

14.873

14.194

Pr..F.

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000001

0.0000003

0.0000003

0.0000005

0.0000025

0.0000039

0.0000104

0.0000166

0.0000268

0.0000326

0.0000346

0.0000433

0.0000839

0.0001560

0.0002090

0.0002860

p.adj
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000001
0.0000001
0.0000003
0.0000019
0.0000019
0.0000029
0.0000128
0.0000188
0.0000479
0.0000726
0.0001110
0.0001290
0.0001310
0.0001560
0.0002900
0.0005170
0.0006680

0.0008790



s__Ureibacillus_thermosphaericus
s__Nocardioides_ungokensis
s__Streptomyces_sp._P3
s__Herbinix_luporum
s__Rhodococcus_sp. MTM3W5.2
s__Bradyrhizobium_lablabi
s__Bradyrhizobium_sp._SK17
s__Streptomyces_hygroscopicus
s__Arthrobacter_sp._FB24
s__Arthrobacter_sp. 24S4 2
s__Micromonospora_sp._B006
s__ Bradyrhizobium_sp. LCT2
s__Pseudarthrobacter_equi
s__Streptomyces_niveus
s__Streptomyces_sp._3214.6
s__Aminobacter_sp. MSH1

s__Nocardioides_cynanchi

s__Conexibacter_sp. SYSU_D00693

s__Rhodoplanes_sp._Z2 YC6860
s__Variovorax_sp. WDL1
s__Microbacterium_foliorum
s__Turicibacter_sp. H121
s__Aeromicrobium_choanae
s__Pseudomonas_fluorescens
s__Priestia_megaterium
s__Microterricola_viridarii

s__Bradyrhizobium_ottawaense

Sum.Sq
19.860
6.399
7.401
8.688
8.579
2.282
6.130
4.683
2.314
2.596
14.112
3.937
13.843
7.469
5.938
5.005
2.082
1.059
1.542
4.406
3.778
4.598
9.903
18.086
2.906
1.699

0.760

Df

—_—

—_—

F.value

13.408

13.170

12.767

11.303

11.209

10.281

10.188

8.842

7.769

7.405

7.086

7.068

6.997

6.816

6.639

6.593

6.500

5.747

5.756

5.246

5.131

5.162

4.234

3.972

3.930

3.815

3.353

Pr..F.

0.0004120

0.0004600

0.0005560

0.0011200

0.0011700

0.0018300

0.0019200

0.0037300

0.0064200

0.0077400

0.0091200

0.0092100

0.0095600

0.0105000

0.0115000

0.0118000

0.0124000

0.0185000

0.0184000

0.0242000

0.0258000

0.0253000

0.0424000

0.0491000

0.0503000

0.0537000

0.0702000

p.adj
0.0012200
0.0013200
0.0015400
0.0029900
0.0030300
0.0046100
0.0046800
0.0088500
0.0148000
0.0174000
0.0196000
0.0196000
0.0198000
0.0213000
0.0228000
0.0228000
0.0234000
0.0333000
0.0333000
0.0427000
0.0437000
0.0437000
0.0703000
0.0800000
0.0803000
0.0841000

0.1080000



Sum.Sq Df F.value Pr..F. p.adj

s__Bradyrhizobium_erythrophlei 1.027 1 2.840 0.0952000 0.1440000

Table 4: Results from ANOVA analysis of single species differential abundance between JB groups A
anova model was used to identify single species that wary in clr-transformed abundance between any two JB
groups (adjusting for year). Species to be analyzed where pre-selected as the top abundant and most varying
species in the dataset. The table show species with adjusted p<0.15 and rows are colored red (p.adj<0.05) and
salmon (p.adj<0.1) based on the adjusted p values.

The species Luteitalea pratensis is among the top associated species, and is a species previously found to
displays a narrower pH, possible leading to the observed differences. This possibility was supported by a
significant association between the species abundance and Rt (correlation test r=0.38, p=0.00009). We thus

zoom in to review the species abundance across the location using a boxplot, and review the association with
JB groups and year of sampling.
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Figure 29: Boxplots showing the clr-trannformed species abundance between JB groups, year and
region.

Overall microbiome communities related to continuous variables

We now turn to the continuous variables. We continue to use the beta-diversity measure from the microbiome,
but use a different analysis model named ENVFIT. We again display the samples in ordination plots but add to
these plots arrows representing the association of the variables with the microbiome.



ENVFIT

The function fits environmental variables onto an ordination using multiple regression and thus looks for linear
relationships between the axis that drive the main variation in the microbiome and the environmental variables.

The output of the analysis gives the direction of the association in terms of coordinates in the ordination plot
(the arrow head). In the plots, the arrows are scaled by their correlation (square root of R2) so that “weak”
variables have shorter arrows than “strong” variables. The arrows point in the direction where they have
maximal correlations with the ordination axis. The lengths of arrows for fitted vectors are automatically adjusted
for the physical size of the plot, and the arrow lengths can thus not be compared across plots, only the arrows
within a plot can be compared.

Note that the ENVFIT analysis uses the ordination exes and therefore is restricted to relate the environmental
factors to the part of the microbiome that is represented by these axes (and thus not the full microbiome
variation). This fact is also relevant when comparing R2 (the squared correlation coefficient) from ADONIS and
envfit: ADONIS decomposes the entire dissimilarity matrix into “variance” explained by each covariate. In
ENVFIT, you have reduced the entire dissimilarity matrix to two dimensions and then look for correlations in
those three dimensions with the covariates. The “discrepancy” is therefore due to the fact that different
amounts of variation are assessed by the two models. Therefore, if ADONIS gives higher R2 values, this
suggests that the effect of the variable is on the parts of the dissimilarity matrix not represented well by the 3-d
NMDS solution. We are using capscale, and not the standard NMDS method, for the ENVFIT analysis, as
capscale allow us to condition out the effect of year befroe performing the correlation analyses. * R2 - variation
explained by the model of multiple regression; the square-root of this value is used to scale lengths of vectors
(arrows) in the ordination diagrams (variables with higher squared (R2) are represented by longer arrows). *
Pr(>r) - the significance of the multiple regression, calculated by permutation test. Indicates whether the
variable is related to ordination axes more than if it is a randomly generated one.

Ordination plots

Bray Curtis
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Figure 48: Visualization of the ENVFIT analysis. The association of the evaluated environmental variables
with the ordination axis is displayed by arrows, with longer arrows indicating a stronger association.

ENVFIT summary statistics tables

ENVFIT for JB 1 & JB2



Bray Jaccard Euclidean

Variable R2 o] R2 p R2 p

Rainfall 0.005 0.878 0.05 0.282 0.062 0.201
Average drought index 0 0.994 0 0.993 0.001 0.978
Average temp. 0.05 0.285 0.23 0.003 0.217 0.002
Rt 0.119 0.05 0.338 0.001 0.61 0.001
Phosphorus 0.023 0.52 0.04 0.391 0.006 0.859
Potassium 0.121 0.035 0.05 0.277 0.098 0.073
Magnesium 0.312 0.001 0.177 0.004 0.19 0.006
Cobber 0.018 0.628 0.069 0.188 0.05 0.305
Organic material (%) 0.08 0.12 0.346 0.001 0.406 0.001
Clay (%) 0.062 0.202 0.042 0.357 0.002 0.942
Nitrogen (%) 0.045 0.318 0.252 0.002 0.305 0.003

Table 32: Results from ENVFIT analysis across JB1 and JB2 fields. The table shows results from ENVFIT
analyses including samples from all fields. The table shows the obtained R-squared values and the
corresponding p-values from the ENVFIT analysis, for each of the assessed variables in each of the three beta-
diversity ordinations.

ENVFIT for JB 1 & JB2

Bray Jaccard Euclidean

Variable R2 o] R2 p R2 p

Rainfall 0.091 0.133 0.104 0.095 0.127 0.047
Average drought index 0.022 0.63 0.016 0.722 0.022 0.646
Average temp. 0.133 0.046 0.242 0.004 0.31 0.001
Rt 0.179 0.015 0.35 0.002 0.475 0.001
Phosphorus 0.022 0.631 0.007 0.847 0.019 0.641
Potassium 0.025 0.556 0.105 0.113 0.094 0.114

Magnesium 0.044 0.369 0.042 0.397 0.314 0.003



Cobber 0.008 0.839 0.005 0.923 0.026 0.561

Organic material (%) 0.065 0.262 0.074 0.2 0177 0.023
Clay (%) 0.106 0.108 0.212 0.006 0.166 0.028
Nitrogen (%) 0.159 0.025 0.238 0.003 0.308 0.001

Table 33: Results from ENVFIT analysis across JB1 and JB2 fields. The table shows results from ENVFIT
analyses including samples from all fields. The table shows the obtained R-squared values and the
corresponding p-values from the ENVFIT analysis, for each of the assessed variables in each of the three beta-
diversity ordinations.

ENVFIT for climate

Note above we have adjusted for year in all ENVFIT analyses. But this is not ideal for the climate variables as
they often are a direct consequence of yearly differences and thus we remvoe the effect we are looking the
study. Therefore, here we eprform ENVFIT analyses again but only for climate variables and this time without
adjustign for year.

Ordination plots ENVFIT summary statistics tables
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Figure 49: Visualization of the ENVFIT analysis for 3 climate variables. The association of the evaluated
environmental variables with the ordination axis is displayed by arrows, with longer arrows indicating a stronger
association.

Non-linear relationships for continuous environmental variables

The ENVFIT model looks for linear relationships between the main variation of the microbiome (the separation
of the samples along the first ordination axes) and the environmental variables. It can also be relevant to look
for non-linear relationships - so called smooth surfaces - where the environmental variable for example is



highest in the centrally located samples on the ordination plot and lower in samples located towards the edges.
We use a mode called Ordisurf to look for such non-linear patterns. Ordisurf internally uses generalized
additive models with integrated smoothness estimation, so-called GAMs, to fit the variable. Below is a table of
the results from the analysis looking for smooth surfaces for the selected variables and further down are the
surfaces illustrated on ordination plots.

Euclidean
F P

Rainfall 1.249 1.75e-02
Average_drought_index 1.656 5.37e-03
Average_temp. 1.324 2.15e-03
Rt 9.404 0.00e+00
Phosphorus 0 8.68e-01
Potassium 0.39 7.29e-02
Magnesium 2.583 4.75e-04
Cobber 0.085 2.74e-01
Organic_material_perc 4,102 9.25e-07
Clay_perc 0 9.90e-01
Nitrogen_perc 2.627 6.41e-05

Table 36: Results from non-linear analysis. The table shows results from the non-linear analyses performed
using Ordisurf for samples JB1 and JB 2. The table shows the obtained F values and the corresponding p-
values, for each of the assessed variables based on the Aitchison beta-diversity.

Euclidean

F P
Rainfall 2.269 1.56e-03
Average_drought_index 4.567 1.64e-05
Average_temp. 1.918 3.49e-04
Rt 4.104 1.51e-06
Phosphorus 0 5.87e-01

Potassium 0.34 1.10e-01



Magnesium 2.108 2.02e-04

Cobber 0.132 3.38e-01
Organic_material_perc 0.805 1.59e-02
Clay_perc 0.695 2.16e-02
Nitrogen_perc 1.879 3.91e-04

Table 37: Results from non-linear analysis. The table shows results from the non-linear analyses performed
using Ordisurf for samples JB5, JB6 and JB 7. The table shows the obtained F values and the corresponding
p-values, for each of the assessed variables based on the Aitchison beta-diversity.

Version information

Table 38: List of used software including the used R-programming environment packages.

Package Version Package Version
oS Ubuntu 20.04.4 LTS utf8 1.2.4

R 4.3.3 generics 0.1.3
splines 4.3.3 robustbase 0.99-2
bitops 1.0-7 class 7.3-22
lifecycle 1.04 httr 1.4.7
rstatix 0.7.2 htmlwidgets 1.6.4

sf 1.0-16 S4Arrays 1.2.1
MASS 7.3-60.0.1 pkgconfig 2.0.3
insight 0.19.10 gtable 0.3.5
backports 1.4.1 hwriter 1.3.2.1
magrittr 2.0.3 pcaPP 2.0-4
plotly 4104 htmiltools 0.5.8.1
sass 0.4.9 biomformat 1.30.0
rmarkdown 2.26 png 0.1-8
jquerylib 0.14 rstudioapi 0.16.0
yaml 2.3.8 tzdb 0.4.0
zip 2.3.1 reshape2 144
cowplot 1.1.3 coda 0.194.1
DBI 1.2.2 nime 3.1-164

minqga 1.2.6 curl 5.2.1



Package
ade4
multcomp
abind
zlibbioc
Rtsne
RCurl
TH.data

sandwich

GenomelnfoDbData

ggrepel
units

svglite
codetools
DelayedArray
xml2
tidyselect
farver
multtest
e1071
survival
iterators
systemfonts
foreach
tools

glue
SparseArray
xfun

mgcv

withr
fastmap
latticeExtra

boot

Version

1.7-22

1.4-25

1.4-5

1.48.2

0.17

1.98-1.14

1.2.11

0.9.5

0.8-5

213

0.2-20

0.28.0

1.3.6

1.2.1

211

2.58.0

1.7-14

3.5-8

1.0.14

1.0.6

1.5.2

43.3

1.7.0

1.24

0.43

1.9-1

3.0.0

0.6-30

1.3-30

Package
nloptr
proxy
cachem
zoo
rhdf5
sjlabelled
KernSmooth
parallel
pillar
vetrs
ggpubr
xtable
cluster
evaluate
mvtnorm
cli
compiler
rlang
crayon
ggsignif
rrcov
labeling
interp
classint
plyr
stringi
viridisLite
deldir
munsell
lazyeval
V8

hms

Version

2.0.3

0.4-27

1.0.8

1.8-12

2.46.1

1.2.0

2.23-22

4.3.3

1.9.0

0.6.5

0.6.0

1.8-4

2.1.6

0.23

1.2-4

3.6.2

4.3.3

1.5.2

0.6.4

1.7-5

0.4.3

0.4-10

1.8.9

1.8.4

04.2

2.0-4

0.5.1

0.2.2
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Package
rhdf5filters
fansi

digest
timechange
R6
estimability
colorspace

jpeg

Version
1.141
1.0.6
0.6.35
0.3.0
251
1.5
2.1-0

0.1-10

Package
Rhdf5lib
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broom
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RcppParallel
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DEoptimR

ape

Version
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